
Propagation of a cylindrically symmetric wave through an optical system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1974 J. Phys. A: Math. Nucl. Gen. 7 519

(http://iopscience.iop.org/0301-0015/7/4/015)

Download details:

IP Address: 171.66.16.87

The article was downloaded on 02/06/2010 at 04:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/7/4
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math., Nucl. Gen., Vol. 7. No. 4, 1974. Printed in Great Britain. Q 1974 
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Received 30 May 1973 

Abstract. The propagation of an electromagnetic wave through an optical system is studied 
for the case when the wave has rotational symmetry with respect to the symmetry axis of the 
system. Spherical surfaces are assumed. Using a method previously developed for the 
refraction at a single surface, which makes use of expansions in spherical harmonics, we now 
solve the problem of combining such expansions to treat a system of arbitrary complexity. 

1. Introduction 

In a previous paper (Byckling 1974, to be referred to as I) we found that it is possible 
to calculate the intensity distribution at the image of a point object, if the optical system 
is a single spherical surface separating two media of different refractive indices. We used 
there some methods of modern theoretical physics, in particular eigenfunction expansions 
and complex integration. An essential ingredient is the principle of stationary phase. 
This is used to evaluate spherical Bessel functions j l ( x ) ,  h,(x) and Legendre functions 
P;"(cos 0) for large order. Even more importantly, it allows the calculation of compli- 
cated integrals and leads to simple results. The physical content of this principle is phase 
coherence, only regions in which the wave components have the same phase can contri- 
bute to the intensity, others can be neglected. 

In this paper we solve the problem of transforming an expansion in spherical har- 
monics from one coordinate system to another. We then use this solution and the results 
of paper I to calculate the amplitude distribution of a wave that has passed through a 
system of n spherical boundaries. Cylindrical symmetry is assumed so that only an 
axial object point can be treated. Off-axis object points will be the subject of a subsequent 
publication. 

We note in passing that the method used here could be formulated in terms of the 
theory of the representations of the three-dimensional group of rotations and transla- 
tions. This, in addition to the principle of stationary phase, is the reason behind the 
simplicity of some of the results. In this paper, however, we only make use of techniques 
taken from calculus. 

2. Transformation of an axially symmetric field at the boundary of two media 

Assume that there is a source of radiation on the z axis and the amplitude of the source 
is given by the complex function g(z). We further assume that the source is of finite 
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extent so that g(z) = 0 for Iz( > 2. Then assuming that the resulting electromagnetic 
field A(r)  is symmetric in rotations around the z axis, one has according to I that 

A(r) = dz g(z)G(z, r). s 
The propagator G(z, r )  can be written in terms of the angle 0 between z and r and the 
lengths z and r .  One must distinguish two cases (van Blade1 1964) 

G(z, r )  = -ink 1 (21 + l)PI(cos 0)j,(nkz)h12)(nkr), 

G(z, r )  = -ink 1 (21 + l)Pl(cos e)hlz)(nkz)jf(nkr),  

z < r  (2.2) 

(2.3 1 
I 

z > r  
I 

In the case r = z these are identical, and they then have a singularity at cos 8 = 1. If the 
source is completely inside the sphere r = r ,  the amplitude can be written 

(2.4) 
21+1 

A(r) = 1 4xBlPf(cos 0)hj2)(nkr) 
I 

B, = - ink[4n(2/ + l)]'/' dz j,(nkz)g(z). s 
If the source is outside the sphere r = r ,  one has 

C I PI(cos e) j, (nkr) 
I 

C, = - ink[4n(2l+ l)] ' I 2  s dz hjz)(nkr)g(z). (2.7) 

The wavefield in the second medium was, in equation (2.35) in I, given for a point 
source. An extended source g(z) will only modify the calculation to the extent that one 
must make the replacement 

-ink[4n(21+ 1)]1/2' 

Then equations (2.35) and (A.7) in I give 

The limits i, 1 are due to the constraint 1x1 = la4/dvl < 4 (see (2.20) and (2.33) in I). 
Comparing with (2.6) we see that A@') is of the form 

C;.P,.(COS a')hj2)(n'ktf) 
21'+ 1 

I '  

with 

P < i  
i<I '<1  
I' > 1.  

(2.10) 

(2.11) 
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The coefficients C ,  thus haye an extremely simple transformation formula in the refrac- 
tion. Outside the interval I ,  7 they are put to zero, and inside it they are multiplied by a 
simple function of 1. For a point source at z = t the C ,  are 

(2.12) 

and for a point image at t’ one has a similar expression. The interesting property is the 
deviation from the ideal imaging process. Thus one can define 

C ,  = - ink[4~(21+ 1)]1’2hj2)(nkt) 

ct - J dz hj2)(nkz)g(z) D f  = 
-ink[4n(21+ 1)]”2hj2)(nkt)-- hj2)(nkt) 

(2.13) 

Then (2.10) becomes 

A@’) = 1 8nn’kzl’j,,(nkr)jf.(n’kr)hj?‘(nkt)hj?)(n‘kt’)D,.P,.(cos a’). (2.14) 

If now the phase of j,. j,,h{?)hi?)D,, in (2.14) is nearly independent of l‘, A(t’) at cos a’ = 1 
is large. 

We now choose a fixed value oft’  (for a given t) and study the phase in (2.14). There 
are two choices of t’ which appear natural. One can take the gaussian image point 
determined by 

f ~ < f ’ < f ~  

1 1 1 1  
nr n‘r nt n’t’ 

+-+- = 0. --- (2.15) 

Then the phase is stationary at 1 = 0. 
The second possibility is to choose t‘ at the maximum intensity. This value t’ is 

obtained by finding the minimum of B = B(I,), equation (I.2.30), where I ,  = lo(t’) is the 
stationary value given by 84/8I = 0. This second possibility p.robably leads to easier 
numerical calculations when aberrations are large. We discuss here only the first 
alternative, which leads to  simpler formulae and becomes equivalent to the second when 
the diffraction limit is approached. 

We write (2.14) as 

A(f)  = F,(t, t’)D,P,(cos a’). 
i < i < i  

At large I the factor Ft is 
1 

( n t 2 k 2 t f 2  - 2 - 1/4 1 )  
4, = *@,*q-Y,-Y;. 

The phase factors 0, Y are 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

and mi, Y’, are obtained through the replacement 

n -+ n‘ t + t’. (2.21) 
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For I = 0 the phase is 

#o = &(nkr-&c)f (n’kr-&c)- (nkt -~nc)- (n’k t ’ -$ t ) .  (2.22) 

This is an uninteresting change of phase related to the propagation from t to t’ along the 
z axis. The important quantity is the variation of the phase, - #o, with 1. Because of 
(2.15) the phase is stationary at  I = 0, and the image quality is dependent on how con- 
stant the phase $o is when 1 increases from 1 to ?. 

3. Transformation of an expansion from one coordinate system to another 

To be able to treat successive refractions, we need to study the change of the expansion 
in spherical harmonics when the field is expressed with respect to a second coordinate 
system. We discuss here only cylindrically symmetric wavefields. 

Let S and S’ be two coordinate systems related by 

x’ = x, Y‘ = Y ,  Z’ = z-d. (3.1) 
Assume that the wavefield is written as the expansion (2.4). Then it can be regarded as 
due to a source g(z) in the interval - r < z < r .  Using the formula 

7r m 

dx jl(x)jl,(x) = - 
21 + 1 s l l ,  

we can show that the source has the expansion 

(3.2) 

Now we ask what are the expansion coefficients in coordinate system S’ for the field 
created by the source (3.3)? 

We first consider such a point r’ in S‘ that the source will be totally inside the sphere 
r’ = r‘. According to (2.4), (2.5), the field is 

with 

B;. = - ink[4n(21‘+ 1)]’12 dz’j,,(nkz’)g(z’) s 
nk 
7l 1=0 

= - 1 (21 + 1)1/2(21’ + 1)’l2 dz’ jl(nkz’ + nkd)j,.(nkz’)B,. 

(3.4) 

(3.5) 

From appendix 1, equation (A.7) we then get 

If the point z’ = - d  is outside the sphere r’ = r’,  ie if r’ < d ,  then the relevant ex- 
pansion is 
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Finally, if the expansion over I is of the type (2.6), the two cases r' > d and r' < d result 
in 

(3.9) 

(3.10) 

In summary, when an expansion in S in transformed into an expansion in S', the 
coefficients A, are transformed according to 

A;. = 1 K,,,(nkd)A, (3.11) 

where the kernel ICltl can be read from (3.6), (3.8)-(3.10), depending on the type of the 
two expansions. Actually, we shall only need the parts propagating to the positive z 
direction (equation (3.10)). 

I 

4. Propagation of an axially symmetric field through several surfaces 

We now consider a set of n spherical surfaces o,, . . . ,on. The notation is taken as in 
figure 1. The distance d i  is positive if Oi is to the right of Oi-  1, otherwise it is negative. 
The radius ri is positive if the surface oi intersects the z axis to the left of Oi, otherwise 
it is negative, -Jril. 

"I "2 "5 "4 

Figure 1. Notation and sign conventions 

"5 

One now fixes the object point Po and calculates the positions of the successive 
paraxial image points PI , .  . . , P, from the formulae 

1 1  1 1 
+--7 -+- = - 

niri niti n i + l r i  n i + , t i  

t i + l  = t i - d d i + , .  (4.2) 
As seen from figure 2, the distances t i ,  ti are positive when going to the positive z direc- 
tion, otherwise they are negative. The object distance from 0, is t ,  and image distance 
from 0, is tk . 

The field between surfaces oi and oi+ is written as an expansion with respect to 
point Oi and also as an expansion with respect to Oi+ , . In writing these we have to 
elaborate slightly the sign conventions. The common convention for the sign of r i ,  
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Figure 2. The successive paraxial image points Po, P I , .  . . , P, and the definitions of t i ,  t;. 

defined above, is the opposite of what would be convenient here, but irrespective of that 
we shall adhere to it. Then the field between oi and oi+ propagating to the right can be 
written in the forms 

In (4.3) and (4.4) the phases depend on r i  and ri+ so that moving the point to the positive 
z direction will give a factor e-iA. This is seen for both signs of r from the equations 

r < O*h{’)(r-A) = hi’)[-(lrl+A)] = (-l)1hj2)(lrl+A) e-iA (4.5) 

(4.6) r > 0 * h!’)(r-A) N e-iA. 

Hi’ = (Bb”, By),  . . .) 
B’) = (B‘d“, By), . . .). 

B ’ O ’ , B ’ ” ,  Bl), . . . ,fin- I) ,  p - 1 )  B’”’ 

We can now define the vectors 

(4.7) 

(4.8) 
Then the sequence 

9 (4.9) 

gives the successive wavefields and it can be calculated by successive integral transforms 
using the results of $8 2 and 3. 

The refraction at surface oi causes a transformation of the expansion coefficients : 

(4.10) Hi+’) = KWBi). 

The transformation matrix K(‘)  is obtained using (2.11) and the equation 

j , ( x )  = +hl’)(x) + +hj2)(x), (4.11) 

and taking only the part propagating in the positive z direction. Then the matrix 
is seen to be diagonal with elements 

Kli! = 0 

K$) = in,+ lkhl”(nikri)h12)(n,+ ,kri) i < 1 < 2  

1 # I‘ 

l < i  i: i < 1. 

(4.12) 
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The values 1 and 1 are the end points of the 1 interval which satisfies the condition 

Here 8, is the angular aperature of surface oivas seen from point O i .  In this discussion 
ti is the value given by (4.1) and then always 1 = 0. 

The field that propagates in the region between ui and ui+ has the expansion (4.3) 
with respect to 0, and (4.4) with respect to O j +  ,. The coefficient vectors B") and B") 
are related by a matrix L") : 

BO = ~ ( O f i j ) ,  (4.14) 

According to 8 3 the kernel L(') has the elements 

L]!] = hfl,.,(nkd). (4.15) 

If d is negative, this is actually /I('): 

hj2'( - x) = ( -  l)'h]l)(X). (4.16) 

The coefficients Bjo) of an initial field created by a point object are, according to (2.7), 
equal to 

Bio) = - in1k[4n(21 + l)] 1i2h{')(n,kt l). (4.17) 

If the object is at - 00, then we use the well known formula 
m 

eircosO - - 1 (21+ l)i~,(z)Pl(cos e) 
I = O  

to obtain 
= [4n(21+ 1)]"2( - i)'. 

(4.18) 

(4.19) 

The amplitude in the image is given by the coefficients Bj") and at a point t', a' we 
have from (2.4) 

(4.20) 

5. Application to a single lens 

The preceding formulae are now applied to a very simple problem, the single lens. The 
notation is that of the left lens of figures 1 and 2, simplified to 

t 1 -  --a, n, = n3 = 1, n, = n, d2 = d. (5.1) 
Then (4. l), (4.2) give the usual equations 

r 
n-1 (5 .2)  t; = - 

r l  -(n- l)d 
n-1 

t ,  = (5.3) 

(5.4) 
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From (4.19) we get 

Bjo) = (8111)’/’( - i)’. 

Then (4.10) and (4.12) give 

The value 2 is determined by (4.13) : 

0, = II-- 2 [ cos-1 (,l1) - +-+cos-’ ; ( - n;rl)  + c o s - 1 ( y ) ] .  (5.7) 

Going now to the coordinate system at point 0, we have from (4.14) and (4.15) 

i 
Bl!’ = h{,?’_,,(nkd)B’,’’. 

I = O  

If there is no aperture limitation at surface oz, the refraction at o, gives then simply 

Collecting together (5.6), ( 5 . 8 )  and (5.9), and using (4.20), we find the amplitude 
distribution of the image to be 

A@’, a’) = 2nkz 1 (ll’)l/’ e-i””2hj1)(kr l)h12’(nkr l)h;‘:ll,,(nkd)hj!)(nkrz) 
‘ , I ‘  

x hl?)(kr,)hlf)(kr’)P,.(cos a’). (5.10) 

We have made a habit of dropping everywhere terms of the order 1- l .  

Let us look at the amplitude distribution on the z axis, a’ = 0. Writing (5.10) as 

40 = F’l, exp(W,,,), (5.11) 
1,l‘ 

the amplitude and phase are obtained from the asymptotic expression 

(z2-P)-1/2-Icos-1 (i) -:]I. (5.12) 

In fact, they are 

- 1/4 

2( l l y  [(1-&)(1-$4(1-&)(1-&)(1-&)] (5.13) k4n2r:dr:t’ Fll ,  = 

(5.14) = - 1 2 ~ l + Y I ( k r l ) -  Y l ( n k r l ) +  Y , I - l f , ( n k d ) +  Y l f ( n k r , ) - Y l & , ) -  Y&’) 

where Y l ( z )  is defined as 

(5.15) 
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If the object point Po is at  a finite distance r, , then one must make the substitutions 

(5.16) 

in (5.13) 

-4.1 + Yf(krl) (5.17) 

Let us study the change of phase under small changes of I and I' .  The derivative is. 
in (5.14). 

(5.18) 

We also have 

At I = 0, I' = 0 both aYff@l and aYlf,/aI' are zero. The sharpness of the image increases 
if the region of stationary phase in the I ,  I' plane becomes larger and larger. We then 
find the region where 

a 
ar = Tdlf -l , l(nkd) + df,(nkr2)- dfr (kr2) -  d,,(kt') 

are smaller than some suitable constant, say in. 
For small x, 

cos- 'x = % - x + x 3 +  2 

implies 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

We have introduced the variables 

Y = ilk, y' = I'/k. (5.25) 

One could now set some limits on the absolute values of (5.23) and (5.24) (or more ac- 
curately (5.20) and (5.21)), and keeping, eg, the equivalent focal length constant, find such 
r I  , r 2 ,  d that these limits are not violated in as large a I ,  I' region as possible. 
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6. Solution for n surfaces 

It is easy to see how (5.13) and (5.14) are generalized if there are n surfaces. In the nota- 
tion of figures l and 2, the amplitude at the image is 

i ,  i. 

where Yl(z) were defined in (5.15). The values i,, . . . ,in and I, ,  . . . ,I, are solutions of 
(4.13). If t i  and ti satisfy (4.1), then Ti = 0. 

In any practical situation the absolute value FJ,,,,ln varies so slowly that it can be 
regarded as constant. If t' has the value t; given by (4.1) for i = n, then the phase $J1, , , l ,  

is stationary at 1 ,  = 0,. . . , 1, = 0. The intensity at the point t' = ti  is, in the first approxi- 
mation, inversely proportional to the square of the determinant 

det ('j ai, aij i , j =  1 , . . . ,  n.  (6.4) 

The amplitude can be calculated accurately by performing numerically the n fold inte- 
gral (6.1). The upper limits l i  account for diffraction. 

Appendix 1. Calculation of J dtjl( t) j l .( t+u) 

To compute the integral over j1(t)&(t + U) we substitute the asymptotic expression (A.13) 
o f I :  

m J- d t  i l ( t  + u).il,(t) 

= f f  d t  t - 1 / 2 ( t + U ) - 1 / 2 ( t 2 - l Z ) - 1 / 4 [ ( t + U ) Z - 1 , 2 ] - 1 1 4  

(:) -:) ( t 2  - P) ' / ' -  1 cos- 
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where a sum over the four sign combinations is implied. The integral (A. l )  is evaluated 
by the method of stationary phase. The derivative of the phase gives 

( t Z  - 12)1/2 [ ( t  + u ) ~  - 1'2]1'2 
f f = o  

which implies l(t + U) = f l't, and thus the phase is stationary at 

t t + u  

1 
l f l '  

t o  = --U. (A.3) 

The sign combinations +, + and -, - in (A. l )  require + I '  in (A.3), and the sign com- 
binations +, - and - , + in (A. l )  require - l' in (A.3). 

The second derivative of the phase at t = to  for the four sign combinations in (A.l)  
is 

for +, + (-, - )  
a211/ ( 1  + 1,)4 b = - = ( 5 )  
a t 2  ll'u2[u2 - (1 + l'y] 1'2 ' 

(1 - r ) 4  

l l 'UZ[U2 - (1 - 1 ) 3 for +, - (-, +). a2+ 
a t 2  

b = - = (f) 
2 112' 

Now, making use of (A.9) in I and summing the four terms in (A.l)  we obtain 
W J- dt jf(t + u) j l , ( t )  

, 1,4cos [ u ~ - ( 1 - l ' ) ~ ] ~ ~ ~ - u c o s - ~  - -- [ ('U'" I] - (2n/ll')1'2 
2[u2-(1-1) 3 - 

, 1/4cos [U2-(l+l')2]l~~-UCOS-1 - -- [ (Y) :] (2./lly 
2[u2-(1+1) ] 

+ 
which is 

r m  - 

The formulae 

PW 

can be derived in the same way. 
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